Massive Inrush Current limitation by Thyristor Based Soft- starter In Wind Mill Poly Phase Induction Generator During Connection with Grid
نویسندگان
چکیده
Abstract—The proposed Thysristor based soft starter using will be simulating in PSCAD on a three-phase induction generator for limitation of Massive inrush current which is 34 times more than the generator current & cause Massive Mechanical stress on coupling, bearing gear & shaft of wind mill poly phase generator during connection with Grid. Experimental results shown a significant reduction in high inrush current and smooth connection of the three phase induction generator to the grid with small impact on the power quality. This work presents a power resistors based soft starter strategy for a small induction-generator based wind turbine. Soft-starter is designed to reduce inrush current or surge in current while achieving a proper synchronism between the generator and the grid. The designed soft-starter successfully limits the high inrush current during the connection of the wind-turbine system to the grid.
منابع مشابه
A New Method to Study Aggregation Effect of Harmonic Current Emissions in a Wind Farm Based on Type-III Wind Turbine Average Modeling
Assessment of complex harmonic current contribution of each wind turbines at connection point of a wind farm to the grid (primary emission) is presented in this paper. Moreover, contribution of grid background harmonic voltage distortion on harmonic current distortion (secondary emission) of each turbine is also evaluated. Both assessments are represented based on primary and secondary transfer...
متن کاملSliding-Mode-based Improved Direct Active and Reactive Power Control of Doubly Fed Induction Generator under Unbalanced Grid Voltage Condition
This paper proposes an improved direct active and reactive power control (DPC) strategy for a grid-connected doubly fed induction generator (DFIG) based wind-turbine system under unbalanced grid voltage condition. The method produces required rotor voltage references based on the sliding mode control (SMC) approach in stationary reference frame, without the requirement of synchronous coordinate...
متن کاملEfficient low-voltage ride-through nonlinear backstepping control strategy for PMSG-based wind turbine during the grid faults
This paper presents a new nonlinear backstepping controller for a direct-driven permanent magnet synchronous generator-based wind turbine, which is connected to the power system via back-to-back converters. The proposed controller deals with maximum power point tracking (MPPT) in normal condition and enhances the low-voltage ride-through (LVRT) capability in fault conditions. In this method, to...
متن کاملتحلیل دینامیک مبدل سمت شبکه و طراحی کنترلکنندۀ خازن لینک DC در توربین-ژنراتورهای بادی با ژنراتور القایی دوسو تغذیه (DFIG)
This paper deals with the analysis of the grid side converter (GSC) dynamics and dc-link controller design in doubly fed induction generator (DFIG) based wind turbines. In this way, at first the current controller design for the GSC is proposed, and then power flow direction in rotor-side and grid-side converters at different slips is determined. Next, the dc link dynamics is extracted based on...
متن کاملOptimal Operation of Doubly-fed Induction Generator used in a Grid-Connected Wind Power System
In this paper, a wind power system based on a doubly-fed induction generator (DFIG) is modeled and simulated. To guarantee high-performance control of the powers injected into the grid by the wind turbine, five intelligent super-twisting sliding mode controllers (STSMC) are used to eliminate the active power and current ripples of the DFIG. The STSMC controller is a high-order sliding mode cont...
متن کامل